Proof of Ira Gessel’s Lattice Path Conjecture

نویسنده

  • MANUEL KAUERS
چکیده

We present a computer-aided, yet fully rigorous, proof of Ira Gessel’s tantalizingly simply-stated conjecture that the number of ways of walking 2n steps in the region x + y ≥ 0, y ≥ 0 of the square-lattice with unit steps in the east, west, north, and south directions, that start and end at the origin, equals 16n (5/6)n(1/2)n (5/3)n(2)n .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A human proof of Gessel’s lattice path conjecture

Gessel walks are lattice paths confined to the quarter plane that start at the origin and consist of unit steps going either West, East, South-West or North-East. In 2001, Ira Gessel conjectured a nice closed-form expression for the number of Gessel walks ending at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kau...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

Towards a Combinatorial Proof of Gessel’s Conjecture on Two-sided Gamma Positivity: a Reduction to Simple Permutations

Gessel conjectured that the two-sided Eulerian polynomial, recording the common distribution of the descent number of a permutation and that of its inverse, has nonnegative integer coefficients when expanded in terms of the gamma basis. This conjecture has been proved recently by Lin. Unlike the corresponding result for the usual Eulerian polynomial, the proof for the two-sided version was not ...

متن کامل

Proof of Gessel’s γ-positivity conjecture

We prove a conjecture of Gessel, which asserts that the joint distribution of descents and inverse descents on permutations has a fascinating refined γ-positivity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008